I. SUITES

On appelle suite toute fonction de \mathbb{N} vers \mathbb{R} , qui à un nombre n associe son image u_n , appelé **terme général** de la suite.

On peut la définir (c'est-à-dire permettre de déterminer les termes u_1 , u_2 , u_3 ... de deux façons différentes :

 \rightarrow A la façon d'une fonction, en donnant un moyen de calculer directement u_n à partir de n.

Exemple:
$$u_n = \frac{1}{n}$$
 $\rightarrow u_1 = 1$, $u_2 = \frac{1}{2}$, $u_3 = \frac{1}{3}$, ...

ightarrow Par **récurrence**, c'est-à-dire en donnant $\begin{cases} \text{le premier terme } u_0 \\ \text{la relation qui relie un terme } u_n \text{ à son suivant } u_{n+1} \end{cases}$

Exemple:
$$\begin{cases} u_0 = 1 \\ u_{n+1} = 2u_n + 1 \end{cases} \rightarrow u_1 = 2u_0 + 1 = 3 , \quad u_2 = 2u_1 + 1 = 7 , \quad u_3 = 2u_2 + 1 = 15 , \dots$$

Variations d'une suite numérique (croissance – décroissance) : 3 méthodes :

1) On étudie le signe de $u_{n+1}-u_n$: Si $u_{n+1}-u_n \le 0$, alors la suite (u_n) est croissante Si $u_{n+1}-u_n \ge 0$, alors la suite (u_n) est décroissante

2) Pour une suite définie à l'aide d'une fonction, du type $u_n = f(n)$, on étudie le sens de variation de la fonction f sur $]0;+\infty[$:

Si f est croissante sur $]0;+\infty[$, alors la suite (u_n) est croissante

Si f est décroissante sur $]0;+\infty[$, alors la suite (u_n) est décroissante

3) Pour une suite à termes <u>strictement positifs</u>, on compare $\frac{u_{n+1}}{u_n}$ à 1:

Si
$$\frac{u_{n+1}}{u_n} \ge 1$$
, alors la suite (u_n) est croissante

Si
$$\frac{u_{n+1}}{u_n} \le 1 \le 1$$
, alors la suite (u_n) est décroissante

Exemple: Soit (u_n) la suite définie par : $u_n = n^2 - 2n$ pour tout entier $n \ge 1$

$$u_{n+1} - u_n = \left\lceil (n+1)^2 - 2(n+1) \right\rceil - \left\lceil n^2 - 2n \right\rceil = \left\lceil n^2 + 2n + 1 - 2n - 2 \right\rceil - n^2 + 2n = 2n - 1$$

⇒ 2n-1>0 si $n>\frac{1}{2}$ or $n \in \mathbb{N}$ donc $u_{n+1}-u_n>0$ si $n \ge 1$: \boldsymbol{u} est croissante à partir du rang 1

Deuxième méthode: Soit la fonction $f(x) = x^2 - 2x$ définie sur \mathbb{R} . Sa dérivée est :

$$f'(x) = 2x - 2 = 2(x - 1)$$
: cette dérivée est positive si $(x - 1) > 0$, soit si $x > 1$

Si x > 1, la dérivée est positive, donc pour x > 1 la fonction f est croissante

Comme la suite u est définie par : $u_n = f(n)$, alors la suite u est croissante à partir du rang 1.

Exemple: (v_n) la suite définie par $v_n = \left(\frac{1}{3}\right)^n$

$$v_{n+1} - v_n = \left(\frac{1}{3}\right)^{n+1} - \left(\frac{1}{3}\right)^n = \frac{1}{3} \times \left(\frac{1}{3}\right)^n - \left(\frac{1}{3}\right)^n = \left(\frac{1}{3}\right)^n \left(\frac{1}{3} - 1\right) = \frac{-2}{3} \left(\frac{1}{3}\right)^n < 0 : \text{ce n'est pas très élégant}$$

$$\Rightarrow \frac{v_{n+1}}{v_n} = \frac{\left(\frac{1}{3}\right)^{n+1}}{\left(\frac{1}{3}\right)^n} = \frac{\frac{1}{3} \times \left(\frac{1}{3}\right)^n}{\left(\frac{1}{3}\right)^n} = \frac{1}{3} : \text{ Ainsi : } 0 < \frac{v_{n+1}}{v_n} < 1 \text{ , (donc } 0 < v_{n+1} < v_n \text{ pour tout entier n)}$$

donc la suite v est décroissante

III. SUITES ARITHMETIQUES

On appelle suite arithmétique toute suite numérique dont chaque terme s'obtient en ajoutant au précédent un nombre r constant appelé raison de la suite.

Elle est donc définie par récurrence par $\begin{cases} u_0 \\ u_{n+1} = u_n + r \end{cases}$

Exemple:
$$\begin{cases} u_0 = 4 \\ u_{n+1} = u_n + 5 \end{cases} \rightarrow u_1 = u_0 + 5 = 9 , \quad u_2 = u_1 + 5 = 14 , \quad u_2 = u_1 + 5 = 19 , \dots$$

Expression générale d'une suite géométrique : $u_n = u_0 + nr$ Exemple : $\begin{cases} u_0 = 4 \\ u_{n+1} = u_n + 5 \end{cases}$ s'écrit : $u_n = 4 + 5n$ $\Rightarrow u_6 = 4 + 5 \times 6 = 34$

Comment savoir si une suite est arithmétique ? \rightarrow il faut regarder si $u_{n+1} - u_n$ est constant

Exemple: $u_n = n^2$ est-elle arithmétique ? $u_{n+1} - u_n = (n+1)^2 - n^2 = (n+1+n)(n+1-n) = 2n+1$

ce n'est pas constant, cette suite n'est pas arithmétique

Exemple : $u_n = 2 - 3n$ est-elle arithmétique ?

 $u_{n+1} - u_n = (2-3(n+1)) - (2-3n) = 2-3n-3-2+3n = -3$ est constant

IV. SUITES GEOMETRIQUES

On appelle suite géométrique toute suite numérique dont chaque terme s'obtient en multipliant le précédent par un nombre q constant appelé **raison** de la suite.

Elle est donc définie par récurrence par $\begin{cases} v_0 \\ v_{n+1} = q \times v_n \end{cases}$

Exemple: $\begin{cases} v_0 = 3 \\ v_{-1} = 2v_n \end{cases} \rightarrow v_1 = 2v_0 = 6 , v_2 = 2v_1 = 12 , v_3 = 2v_2 = 24 , \dots$

Expression générale d'une suite géométrique : $v_n = v_0 \times q^n$ Exemple : $\begin{cases} v_0 = 3 \\ v_{n+1} = 2v_n \end{cases}$ s'écrit : $v_n = 3 \times 2^n$ $\Rightarrow v_6 = 3 \times 2^6 = 3 \times 64 = 192$

Comment savoir si une suite est géométrique? \rightarrow il faut regarder si $\frac{v_{n+1}}{v_n}$ est constant

Exemple : $v_n = 2n+1$ est-elle géométrique ? $\frac{v_{n+1}}{v_n} = \frac{2(n+1)+1}{2n+1} = \frac{2n+3}{2n+1}$ ce n'est pas constant

Exemple: $v_n = 5 \times 8^n$ est-elle géométrique ? $\frac{v_{n+1}}{v_n} = \frac{5 \times 8^{n+1}}{5 \times 8^n} = 8$ est constant

Somme des termes d'une suite géométrique :

$$S_n = v_0 + v_1 + v_2 + \dots + v_n = v_0 \frac{1 - q^{n+1}}{1 - q}$$

$$\rightarrow$$
 si le premier terme est v_1 : $S_n = v_1 + v_2 + ... + v_n = v_1 \frac{1 - q^n}{1 - q}$

Exemple: Soit (v_n) la suite géométrique de raison q = 2 et de terme initial $v_0 = 5$

Calculez
$$S = v_5 + v_6 + v_7 + ... + v_{20}$$

$$\rightarrow$$
 La suite (v_n) s'écrit : $v_n = v_0 \times q^n = 5 \times 2^n$

On peut calculer la somme des 20 premiers termes de la suite (v_n) :

$$v_0 + v_1 + v_2 + \dots + v_{20} = v_0 \frac{1 - q^{20 + 1}}{1 - q} = 5 \times \frac{1 - 2^{21}}{1 - 2} = 5 \times \frac{1 - 2^{21}}{-1} = -5 \times (1 - 2^{21}) = 5 \times (2^{21} - 1)$$

Or:

$$v_0 + v_1 + v_2 + \dots + v_4 = v_0 \frac{1 - q^{4+1}}{1 - q} = 5 \times \frac{1 - 2^5}{1 - 2} = 5 \times \frac{1 - 2^5}{-1} = -5 \times (1 - 2^5) = 5 \times (2^5 - 1)$$

Donc :

$$S = (v_0 + v_1 + v_2 + \dots + v_{20}) - (v_0 + v_1 + v_2 + \dots + v_4) = 5 \times (2^{21} - 1) - 5 \times (2^5 - 1) = 5 \times (2^{21} - 2^5)$$

V. ALGORITHMIQUE

On cherche à déterminer tous les termes d'une suite (définie en fonction de n) jusqu'à un certain rang P.

Algorithme

P prend la valeur 0 Saisir N

Tant que $P \le N$

U prend la valeur [expression de la suite]

Afficher U

P prend la valeur P+1

Fin de boucle.

Programme TI 82

 $0\Box P$

Prompt N

While $P \le N$

[expression de la suite] □ U

Disp U

P+1 □ P

End

Remarques:

Pour une suite définie par récurrence il faudrait :

- initialiser P à la valeur 1 et non pas 0
- après la 1^{ère} ligne, insérer « U prend la valeur de [u₀] »