Fonctions et dérivation

I. La fonction racine carrée

1. Définition

La fonction « racine carrée » est la fonction f qui, à tout nombre réel positif x, associe sa racine carrée \sqrt{x} .

L'ensemble de définition de f est : $D_f = [0; +\infty[$

$$f(2) = \sqrt{2}$$

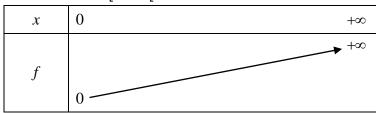
$$f(4) = 2$$

$$f(-5)$$
 est impossible

2. Théorème

La fonction racine carrée est **strictement croissante** sur $[0;+\infty[$.

Tableau de variation :



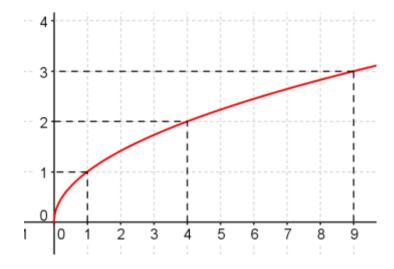
Le minimum de la fonction racine carrée est 0 c'est-à-dire que pour tout $x,\ \sqrt{x} \ge 0$

3. Représentation graphique

Tableau de valeurs :

х	0	1	2	3	4	5	6	9
$f(x) = \sqrt{x}$	0	1	≈ 1,41	≈1,72	2	≈ 2,23	≈ 2,45	3

Représentation graphique :



II. La fonction cube

1. <u>Définition</u>

La fonction « cube » est la fonction f qui, à tout nombre réel positif x, associe son cube x^3 .

L'ensemble de définition de f est : $D_f = \mathbb{R}$

$$f(2) = 8$$

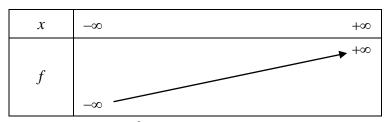
$$f(4) = 64$$

$$f(-5) = -125$$

2. Théorème

La fonction cube est **strictement croissante** sur \mathbb{R} .

Tableau de variation :



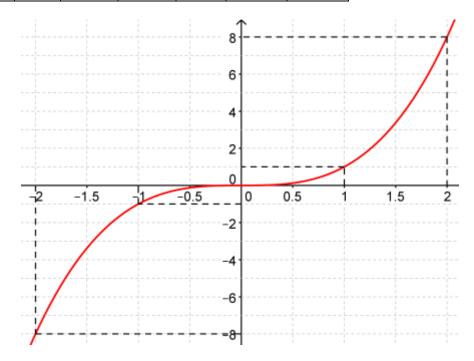
Si
$$x \ge 0$$
 alors $x^3 \ge 0$
Si $x \le 0$ alors $x^3 \le 0$

3. Représentation graphique

Tableau de valeurs :

х	-3	-2	-1	0	1	2	3
$f(x) = \sqrt{x}$	-27	-8	-1	0	1	8	27

Représentation graphique :



III Taux de variation.

♦ Définition :

Soit f une fonction définie sur un intervalle I.

Si a et b sont deux réels (points) de I, avec $a \neq b$, le quotient $\frac{f(b) - f(a)}{b - a}$ s'appelle « le taux de variation de la fonction f entre les réels a et b »

En posant b = a + h avec $h \neq 0$, ce quotient s'écrit : $\frac{f(a+h)-f(a)}{h}$

♦ Interprétation géométrique :

Soit A un point de la courbe d'abscisse a : A(a;f(a))

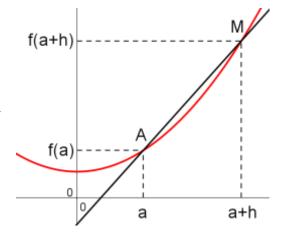
et M un point distinct de A, d'abscisse a + h: M(a+h;f(a+h))

Le coefficient directeur de la droite (AM) est donné par : $\frac{\mathbf{y_M} - \mathbf{y_A}}{\mathbf{x_M} - \mathbf{x_A}} = \frac{\mathbf{f}(\mathbf{a} + \mathbf{h}) - \mathbf{f}(\mathbf{a})}{\mathbf{h}}$

Propriété :

Soit A un point de coordonnées (a; f(a)) et M un point distinct de A, de coordonnées (a+h; f(a+h)).

Le taux de variation de f entre A et M est égal au coefficient directeur de la droite (AM).



3

NB: Toutes les droites admettent un coefficient directeur, sauf les droites verticales.

IV Fonction dérivable en un point, nombre dérivé

Définition:

Soit f une fonction définie sur un intervalle I et a un point de I.

Dire que « f est dérivable en a » signifie que lorsque h tend vers 0, le taux de variation $\frac{f(a+h)-f(a)}{h}$ tend vers un nombre réel fini.

(On dit que « le taux de variation admet une limite finie lorsque h tend vers 0 »). Ce nombre réel noté f'(a) s'appelle « le nombre dérivé de la fonction f en a » et on note :

$$\lim_{h\to 0} \frac{f(a+h)-f(a)}{h} = f'(a)$$

Exemple 1:

Soit $f: x \mapsto x^2$, nous allons montrer que f est « dérivable en 3 ».

Calculons le taux de variation de f entre 3 et 3 + h.

$$\frac{f(3+h)-f(3)}{h} = \frac{(3+h)^2-3^2}{h} = \frac{3^2+2\times3\times h+h^2-3^2}{h} = \frac{6h+h^2}{h} = \frac{h(6+h)}{h} = 6+h$$

Cherchons la limite de ce taux de variation lorsque h tend vers 0

Lorsque l'on donne à h des valeurs proches de 0, 6 + h prend des valeurs proches de 6

On écrit :
$$\lim_{h \to 0} \frac{f(3+h) - f(3)}{h} = \lim_{h \to 0} 6 + h = 6$$

On dit que f est dérivable en 3 et que son nombre dérivé en 3, noté f'(3) est 6 : f'(3) = 6

Exemple 2:

On donne la fonction $f: x \mapsto \sqrt{x}$.

Montrez que f est dérivable en 2 et donnez son nombre dérivé en 2, f'(2).

Calculons le taux de variation de f entre 2 et 2 + h.

$$\frac{\sqrt{2+h} - \sqrt{2}}{h} = \frac{\left(\sqrt{2+h} - \sqrt{2}\right)\left(\sqrt{2+h} + \sqrt{2}\right)}{h\left(\sqrt{2+h} + \sqrt{2}\right)} = \frac{\left(\sqrt{2+h}\right)^2 - \left(\sqrt{2}\right)^2}{h\left(\sqrt{2+h} + \sqrt{2}\right)} = \frac{2+h-2}{h\left(\sqrt{2+h} + \sqrt{2}\right)}$$
soit:
$$\frac{\sqrt{2+h} - \sqrt{2}}{h} = \frac{h}{h\left(\sqrt{x+h} + \sqrt{x}\right)} = \frac{1}{\sqrt{2+h} + \sqrt{2}}$$

• Cherchons la limite de ce taux de variation lorsque h tend vers 0

Lorsque l'on donne à h des valeurs proches de 0, 2 + h prend des valeurs proches de 2.

On écrit :
$$\lim_{h \to 0} \frac{\sqrt{2+h} - \sqrt{2}}{h} = \lim_{h \to 0} \frac{1}{\sqrt{2+h} + \sqrt{2}} = \frac{1}{\sqrt{2} + \sqrt{2}} = \frac{1}{2\sqrt{2}}$$

On dit que f est dérivable en 2 et que son nombre dérivé en 2, noté f'(2) est $\frac{1}{2\sqrt{2}}$: $f'(2) = \frac{1}{2\sqrt{2}}$

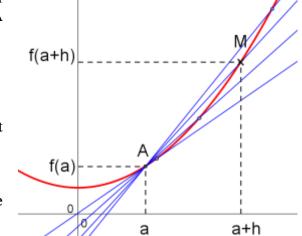
V Interprétation géométrique de la dérivabilité d'une fonction en un point – Tangente

On considère la courbe représentative d'une fonction f dans un repère, f étant dérivable en un point A d'abscisse a.

Les coordonnées du point A sont donc :

A(a; f(a)).

Sur cette courbe, on considère les points A(a; f(a)) et M(a + h; f(a + h)) ($h \neq 0$) (M est différent de A).



4

Le <u>taux de variation</u> de la courbe entre le point A et le point M est :

$$\frac{f(a+h)-f(a)}{(a+h)-a} = \frac{f(a+h)-f(a)}{h}$$

Si M est pris infiniment proche de A, mais différent de A, on a :

$$\lim_{h \to 0} \frac{f(a+h) - f(a)}{(a+h) - a} = f'(a)$$
 puisque la fonction f est dérivable en a

Lorsque h tend vers h, alors h tend vers h et graphiquement et le point h se rapproche tout près du point h (tout en étant distinct du point h).

 \rightarrow la droite (AM) finit par coïncider avec une droite T_A que l'on appelle la tangente en A à la courbe C_f

Le coefficient directeur de la tangente
$$T_A$$
 est f'(a) car $\lim_{h\to 0} \frac{f(a+h)-f(a)}{h} = f'(a)$

« f est dérivable en a » signifie que toutes les droites (AM) finissent par coïncider avec une droite (non parallèle avec l'axe des ordonnées) lorsque h tend vers 0 : cette droite s'appelle la tangente au point d'abscisse a à la courbe »